12.10  Rekentechniek
1
  • 2 x 4 = 1 2 x + 2 4 x 8 = x + 2 2 3 x = 8 + 2 2 x = 8 3 + 2 3 2

  • x x + 1 = 2 x = 2 ( x + 1 ) 3 x = 2 x = 2 3

  • 4 1 2 x 3 = 0 x = 4 1 2 3 = 1 1 2 x = ( 1 1 2 ) 2 = 9 4 = 2 1 4

  • x 4 1 3 = x 5 1 2 (alles keer 60 ) 15 x 20 = 12 x 30 3 x = 10 x = 3 1 3

2
a
  • y = 4 ( x 1 2 ) 2 2 , dus top ( 1 2 , 2 )

  • y = ( x 2 ) 2 3 , dus top ( 2, 3 )

  • y = 1 2 ( x 3 ) 2 + 5 , dus top ( 3,5 )

  • y = 1 3 ( x + 2 ) 2 + 1 3 , dus top ( 2, 1 3 )

b
  • x 2 + 5 x + 1 4 = 0 ( x + 2 1 2 ) 2 6 = 0 x = 2 1 2 6 of x = 2 1 2 + 6

  • ( x 2 2 ) 2 8 = 1 ( x 2 2 ) 2 = 9 x = 2 2 3 of x = 2 2 + 3

  • 4 2 x + x 2 2 x = 3 4 + x 2 2 x = 3 4 + x 2 = 6 x x 2 6 x 4 = 0 ( x 3 ) 2 = 5 x = 3 5 of x = 3 + 5

  • x 2 4 3 x + 12 = 0 ( x 2 3 ) 2 12 + 12 = 0 x = 2 3

3
  • x 3 x = 0 x = 0 of x 2 1 = 0 x = 1 of x = 0 of x = 1

  • x 3 2 x 2 = x 2 + 18 x x 3 3 x 2 18 x = 0 x = 0 of x 2 3 x 18 = 0 x = 0 of ( x 6 ) ( x + 3 ) = 0 , dus x = 3 of x = 0 of x = 6

  • x x 1 = x ( x 1 ) x = 0 of x 1 = x 1 x = 0 of x 1 = ( x 1 ) 2 x = 0 of x 1 = 0 of x 1 = 1 , dus x = 0 of x = 1 of x = 2

  • x ( x 2 ) ( x + 2 ) = x + 2 x + 2 = 0 of x ( x 2 ) = 1 x = 2 of x 2 2 x 1 = 0
    x = 2 of x = 1 2 of x = 1 + 2

  • 1 x log ( 3 x ) = ( 2 x + 1 ) log ( 3 x ) log ( 3 x ) = 0 of 1 x = 2 x + 1 3 x = 1 of 1 = 2 x 2 + x x = 1 3 of x = 1 2 of x = 1 (voldoet niet: logaritme van negatief getal bestaat niet), dus twee oplossingen: x = 1 3 of x = 1 2

  • Kruislings vermenigvuldigen: ( x + 3 ) ( x 2 1 ) = ( x + 3 ) ( 2 x + 2 ) x + 3 = 0 of x 2 1 = 2 x + 2 x = 3 of x 2 2 x 3 = 0 x = 3 of x = 3 of x = 1 (voldoet niet: delen door nul!), dus twee oplossingen: x = 3 of x = 3 .
    (Kan ook anders: de tellers zijn nul óf de noemers zijn gelijk.)

4
a

De andere rechthoekszijde is (met Pythagoras) 289 x 2 . De twee rechthoekszijden samen zijn 40 17 = 23 .

b

289 x 2 = 23 x 289 x 2 = ( 23 x ) 2 = 529 46 x + x 2 x 2 23 x + 120 = 0 ( x 8 ) ( x 15 ) = 0 x = 8 of x = 15

5
a
  • Kwadrateren geeft: x 2 = x + 2 x 2 x 2 = 0 ( x 2 ) ( x + 1 ) = 0 x = 2 of x = 1 ; alleen x = 2 voldoet.

  • Kwadrateren geeft: x 2 = x + 2 x 2 x 2 = 0 ( x 2 ) ( x + 1 ) = 0 x = 2 of x = 1 ; alleen x = 1 voldoet.

  • x = x + 2 x 2 = x x 2 4 x + 4 = x x 2 5 x + 4 = 0
    x 2 4 x + 4 = x x 2 5 x + 4 = 0 ( x 1 ) ( x 4 ) = 0 x = 1 of x = 4 ; alleen x = 4 voldoet.

b
  • x = x 20 x = ( x 20 ) 2 = x 2 40 x + 400 x 2 41 x + 400 = ( x 25 ) ( x 16 ) = 0 x = 25 of x = 16 ; alleen x = 25 voldoet.

  • 3 x 2 = x 20 9 ( x 2 ) = ( x 20 ) 2 = x 2 40 x + 400 x 2 49 x + 418 = ( x 38 ) ( x 11 ) = 0 x = 38 of x = 11 ; alleen x = 38 voldoet.

c

5 4 1 x = 2 x + 1 1 2 4 1 x = 3 1 2 2 x 16 ( 1 x ) = ( 3 1 2 2 x ) 2 = 12 1 4 14 x + 4 x 2 16 x 2 + 8 x 15 = 0 x = 1 1 4 of x = 3 4 ;
Snijpunten: ( 1 1 4 , 1 ) en ( 3 4 ,3 )

Ongelijkheden
6
  • Gelijkheid: x 2 = 9 x = 3 of x = 3 ;
    Verticale asymptoot bij x = 0 ; schets zelf maken;
    Antwoord: 3 x < 0 of x 3 .

  • Gelijkheid: x + 1 = x 5 x + 1 = ( x 5 ) 2 x 2 11 x + 24 = ( x 3 ) ( x 8 ) = 0 x = 3 (voldoet niet) of x = 8 ;
    Domein van wortelfunctie is x 1 ; schets zelf maken;
    Antwoord: 1 x < 8 .

  • Gelijkheid: ( x 3 ) ( x + 4 ) = x + 1 x 2 = 13 x = 13 of x = 13 ;
    Het is een dalparabool en een lijn, dus is kleiner voor waarden tussen de snijpunten;
    Antwoord: 13 < x < 13 .

  • Gelijkheid: 2 = x ( x + 1 ) x 2 + x 2 = ( x 1 ) ( x + 2 ) = 0 x = 2 of x = 1 ;
    Verticale asymptoot bij x = 0 ; schets zelf maken;
    Antwoord: x 2 of 1 < x 1 .

Substitutie
7
a

x + 5 = 1 of x + 5 = 2 , dus x = ‐4 of x = ‐3

b

1 x = 1 of 1 x = 2 , dus x = 1 of x = 1 2

c

x 2 = 1 of x 2 = 2 , dus x = 1 , x = ‐1 , x = 2 of x = 2

d

( x 2 3 ) ( x 2 + 2 ) = 0 x 2 = 2 (kan niet) of x 2 = 3 , dus x = 3 of x = 3

e

log ( x ) = 1 of log ( x ) = 2 , dus x = 10 1 = 10 of x = 10 2 = 100

f

Substitutie a = 2 x geeft a 2 3 a + 2 = 0 , dus 2 x = 1 of 2 x = 2 , dus x = 0 of x = 1

8
a

x 4 4 x 2 + 3 = 0 ( x 2 3 ) ( x 2 1 ) = 0 x 2 = 3 of x 2 = 1 , dus x = ‐1 , x = 1 , x = 3 of x = 3

b

x 6 7 x 3 8 = 0 ( x 3 8 ) ( x 3 + 1 ) = 0 x 3 = 8 of x 3 = 1 , dus x = 2 of x = 1

c

x 5 x 3 2 x = 0 x ( x 4 x 2 2 ) = 0 x ( x 2 2 ) ( x 2 + 1 ) = 0 x = 0 of x 2 = 2 of x 2 = 1 (kan niet), dus x = 0 , x = 2 of x = 2

9
a

x + x = 6 geeft a 2 + a = 6 met a = x a 2 + a 6 = 0 ( a + 3 ) ( a 2 ) = 0 a = 3 of a = 2 , dus x = 3 (kan niet), of x = 2 geeft enige oplossing x = 4

b

Substitueer x + 1 = a , je krijgt dan:
a 3 a 2 2 a = 0 a ( a 2 ) ( a + 1 ) = 0 a = 0 of a = 2 of a = 1 x + 1 = 0 of x + 1 = 2 of x + 1 = 1 , dus x = 1 , x = 1 of x = 2

c

Substitueer a = x + 3 , dan krijg je a 125 a 2 = 0 a 3 = 125 a = 5 , dus x + 3 = 5 x + 3 = 25 x = 22

d

Substitueer x + 3 = a , dan krijg je:
1 a + a = 2 1 2 2 a 2 5 a + 2 = 0 a = 2 of a = 1 2 , dus x = ‐1 of x = ‐2 1 2

e

( 1 x 2 ) ( 1 x + 3 ) = 0 1 x = 2 of 1 x = 3 , dus x = 1 2 of x = 1 3

f

Substitutie a = log ( x ) geeft a 1 a = 0 a 2 1 = 0 a = 1 of a = 1 log ( x ) = 1 of log ( x ) = 1 x = 10 1 = 0,1 of x = 10 1 = 10

Stelsels vergelijkingen
10

x = 1 , y = 1

x = 1 2 , y = 1 2

x = 2 , y = 3

x = 3 , y = 4

11
  • f : punt ( 0,2 ) invullen geeft direct c = 2 ; De twee andere punten invullen geeft het stelsel { 16 a 4 b + 2 = 7 16 a + 4 b + 2 = 1 met de oplossing a = 1 16 en b = 1 .

  • g : punten ( 0,6 ) en ( 1,4 ) invullen geeft het stelsel { p q = 6 p q + 1 = 4 ; de bovenste vergelijking geeft p = 6 q en dan substitueren in de tweede vergelijking geeft 6 q q + 1 = 4 4 ( q + 1 ) = 6 q q = 2 p = 12 .

12
  • { y = 11 x y = x + 5 x + 5 = 11 x x = 6 x x = 36 12 x + x 2 ( x 4 ) ( x 9 ) = 0 x = 9 (voldoet niet) of x = 4 y = 9

  • { y = 5 x 2 y = ( 1 x ) 2 ( 1 x ) 2 = 5 x 2 x 2 x 2 = 0 ( x 2 ) ( x + 1 ) = 0 x = 2 of x = 1 . x = 2 geeft y = 1 maar dit voldoet niet;
    Enige oplossing: x = 1 en y = 4 .

Bordjesmethode
13

x = 2 1 2

x = 32

x = 16

x = 27 16 of x = 27 16

x = 4

x = 1 2

Exponenten en logaritmen
14
a
  • 10 x 1 = 10 1 + 1 2 x x 1 = 1 + 1 2 x x = 4

  • 3 1 2 2 x = 3 1 + 1 2 x 1 2 2 x = 1 + 1 2 x x = 3 5

  • 2 x 4 = ( 2 x ) 3 = 2 3 x 2 x 2 = 2 3 x x 2 = 3 x x = 1

  • 2 1 2 x = 2 x 1 2 x = x x 2 x = 0 x ( x 2 ) = 0 x = 0 of x = 4

b
  • Noem 2 x = y , dan y + 1 y = 2 1 2 y 2 2 1 2 y + 1 = 0 ( y 1 ) ( y 1 2 ) = 0 y = 1 2 of y = 2 , dus x = 1 of x = 1 .

  • 2 x + 2 2 x = 3 ; noem 2 x = y , dan: y + 2 y = 3 y 2 3 y + 2 = 0 y = 1 of y = 2 , dus x = 0 of x = 1 .

  • 4 x = ( 2 2 ) x = ( 2 x ) 2 , dus de vergelijking wordt ( 2 x ) 2 + 16 = 10 2 x ;
    noem 2 x = y , dan: y 2 10 y + 16 = 0 y = 2 of y = 8 , dus x = 1 of x = 3 .

  • Delen door 2 x geeft 3 3 x = 81 3 x = 81 3 = 3 4 3 1 2 = 3 3 1 2 x = 3 1 2 .

c
  • 5 log ( x + 1 ) = 5 log ( 25 ) + 5 log ( x 1 ) = 5 log ( 25 ( x 1 ) ) x + 1 = 25 ( x 1 ) x = 13 12

  • 5 log ( x + 1 ) = 5 log ( ( x 1 ) 2 ) x + 1 = ( x 1 ) 2 = x 2 2 x + 1 x ( x 3 ) = 0 x = 0 of x = 3 . Alleen x = 3 voldoet.

  • Noem log ( x ) = y dan 1 y + y = 2 1 2 2 y 2 5 y + 2 = 0 y = 1 2 of y = 2 , dus: x = 10 of x = 100 .

  • 2 log ( x ) log ( x + 4 ) = log ( 2 x 6 ) log ( x 2 ) = log ( ( x + 4 ) ( 2 x 6 ) ) x 2 = ( x + 4 ) ( 2 x 6 ) x 2 + 2 x 24 = 0 x = 4 of x = 6 .
    Alleen x = 4 voldoet.

  • 2 log ( x ) log ( x + 1 ) = log ( x 2 ) log ( x 2 ) = log ( ( x + 1 ) ( x 2 ) ) x 2 = ( x + 1 ) ( x 2 ) x = 2 .
    Maar x = 2 voldoet niet, dus de vergelijking heeft geen oplossingen.

15
  • Gelijkheid: 3 5 2 x = 3 1 1 2 x = 1 3 4 ; schets maken (geen asymptoot) en antwoord geven: x 1 3 4 .

  • Gelijkheid: 2 x 2 = 2 2 3 x = 2 2 3 ; schets maken (geen asymptoot) en antwoord geven: x > 2 2 3 .

  • Gelijkheid: 10 2 x = 10 1 2 x 2 x = 1 2 x x = 4 3 ; schets maken (geen asymptoot) en antwoord geven: x > 4 3 .

  • Gelijkheid: x x = 64 x 3 2 = 2 6 x = ( 2 6 ) 2 3 = 2 4 = 16 ; schets maken (asymptoot bij x = 0 ) en antwoord geven: 0 < x 16 .

  • Gelijkheid: x 3 = 1 2 x x = ( 1 2 x ) 3 = 1 8 x 3 x = 0 of 1 8 x 2 = 1 x = 0 of x = 8 of x = 8 ; schets maken (geen asymptoot) en antwoord geven: x < 8 of 0 < x < 8 .

  • Gelijkheid: 4 ( x 1 ) + 4 ( x + 1 ) ( x + 1 ) ( x 1 ) = x 8 x x 2 1 = x x 3 x = 8 x x 3 9 x = 0 x ( x 2 9 ) = 0 x = 0 of x = 3 of x = 3 ; schets maken (twee asymptoten: bij x = 1 en x = 1 ) en antwoord geven: x 3 of 1 < x 0 of 1 < x 3 .

  • Gelijkheid: log ( x + 1 3 ) = log ( 10 ) log ( x ) = log ( 10 x ) x + 1 3 = 10 x x 2 + 1 3 x 10 = 0 x = 3 of x = 3 1 3 (voldoet niet); schets maken (twee verticale asymptoten bij x = 1 3 en x = 0 ) en antwoord geven: x 3 .

  • Gelijkheid: log ( x + 2 ) = log ( 2 x ) x + 2 = 2 x x = 0 ; schets maken (twee verticale asymptoten bij x = 2 en x = 2 ) en antwoord geven: 0 x < 2 .

Goniometrie
16
a
  • sin ( 2 x ) = 1 2 2 x = 1 6 π + k 2 π of 2 x = π 1 6 π + k 2 π ( k geheel)
    x = 1 12 π + k π of x = 7 12 π + k π
    dus x = 11 12 π , x = 1 11 12 π , x = 5 12 π of x = 1 5 12 π

  • sin ( π x ) = 1 2 2 π x = 1 4 π + k 2 π of π x = 3 4 π + k 2 π ( k geheel)
    x = 1 4 + 2 k of x = 3 4 + 2 k ,
    dus x = 1 4 , x = 2 1 4 , x = 4 1 4 , x = 6 1 4 , x = 3 4 , x = 2 3 4 of x = 4 3 4

  • 3 x 1 3 π = 1 3 π + k 2 π of 3 x 1 3 π = π 1 3 π + k 2 π ( k geheel)
    3 x = 2 3 π + k 2 π of 3 x = π + k 2 π
    x = 2 9 π + k 2 3 π of x = 1 3 π + k 2 3 π ,
    dus x = 2 9 π , x = 8 9 π , x = 1 5 9 π , x = 1 3 π , x = π of x = 1 2 3 π

  • cos ( 2 x ) = 3 4 = 1 2 3 of cos ( 2 x ) = 1 2 3
    2 x = 1 6 π + k 2 π of 2 x = 2 π 1 6 π + k 2 π ( k geheel)
    x = 1 12 π + k π of x = 11 12 π + k π ,
    dus x = 1 12 π , x = 11 12 π , x = 1 1 12 π of x = 1 11 12 π

b
  • sin ( 0,4 x 1 ) = 0,4
    0,4 x 1 = 0,4115... + k 2 π of 0,4 x 1 = π 0,4115... + k 2 π ( k geheel) x = 3,52879... + k 5 π of x = 9,325... + k 5 π ,
    dus (afgerond) x = 3,529 , x = 9,325 of x = 6,383

  • cos ( 1 10 x + 1 ) = 0,4
    1 10 x + 1 = 1,9823... + k 2 π of 1 10 x + 1 = 2 π 1,9823... + k 2 π ( k geheel) x = 9,823... + k 20 π of x = 33,0089... + k 20 π ,
    dus (afgerond) x = 9,823 , x = 72,655 of x = 33,009

c
  • Eerst sin ( 2 x ) = 0,3 2 x = 0,304... + k 2 π of 2 x = π 0,304... + k 2 π ( k geheel)
    x = 0,1523... + k π of x = 1,4184... + k π ,
    dus oplossingen (afgerond) x = 0,152 , x = 3,294 , x = 1,418 en x = 4,560 ;
    Schets maken met hulp GR en antwoord geven:
    0,152 < x < 1,418 of 3,294 < x < 4,560 .

  • Eerst cos ( x + 1 ) = 0,15 x + 1 = 1,420... + k 2 π of x + 1 = 2 π 1,420... + k 2 π (of k geheel)
    x = 0,420... + k 2 π of x = 3,863... + k 2 π ,
    dus oplossingen (afgerond) x = 0,420 , x = 6,703 en x = 3,863 ;
    Schets maken met hulp GR en antwoord geven:
    0 x < 0,420 of 3,863 < x < 6,703 .

Breuken (als toetje)
17
a

y = 4 x + 3 2 x 1 = 2 ( 2 x 1 ) + 5 2 x 1 = 2 ( 2 x 1 ) 2 x 1 + 5 2 x 1 = 2 + 5 2 x 1 ;
y = 2 + 5 2 x 1 = 2 + 5 ( 2 x 1 ) 1 , dus y ' = - 5 ( 2 x 1 ) 2 2 = 10 ( 2 x 1 ) 2 .

b

y = 2 x 1 2 x + 1 = 2 ( x + 1 ) ( x 1 ) ( x + 1 ) 2 ( x 1 ) ( x 1 ) ( x + 1 ) = 2 x + 2 2 x + 2 x 2 1 = 4 x 2 1

c
  • f ( x ) = x 2 + 6 2 x = x 2 2 x + 6 2 x = 1 2 x + 3 x 1 , dus f ' ( x ) = 1 2 3 x 2 = 1 2 3 x 2 = 0 1 2 = 3 x 2 x 2 = 6 , dus x = 6 of x = 6 .

  • f ( x ) = x 3 2 x 2 = x 2 x 2 3 2 x 2 = 1 2 x 3 2 x 2 = 1 2 1 x 3 2 1 x 2 , dus f ( x ) = 1 2 x 1 3 2 x 2 ;
    f ' ( x ) = 1 2 x 2 + 3 x 3 = 1 2 x 2 + 3 x 3 = x 2 x 3 + 6 2 x 3 = 6 x 2 x 3 = 0 x = 6 .